
Improving IR Performance from OCRed Text using
Cooccurrence

Kripabandhu Ghosh, Anirban Chakraborty and Swapan Kumar Parui
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute, Kolkata, West Bengal, India
{kripa.ghosh, chakraborty.abhi89, swapan.parui}@gmail.com

ABSTRACT
Information Retrieval performance is hurt to a great extent
by OCR errors. Much research has been reported on mod-
elling and correction of OCR errors. However, all the ex-
isting systems make use of language dependent resources or
training texts to study the nature of errors. No research has
been reported on improving retrieval performance from erro-
neous text when no training data is available. We propose a
novel algorithm for automatic detection of OCR errors and
improvement of retrieval performance from the erroneous
corpus. Our algorithm does not use any training data or
any language specific resources like thesaurus. It also does
not use any knowledge about the language except that the
word delimiter is blank space. We have tested our algo-
rithm on erroneous OCRed Bangla FIRE collection offered
in the RISOT 2012 track and obtained about 9% improve-
ment over the OCRed baseline. However, the improvement
is not statistically significant.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval

General Terms
Noisy corpus

Keywords
Cooccurrence, Query Expansion

1. INTRODUCTION
Erroneous text collections have presented research challenges
to the scientists. Many such collections have been created.
The researchers have tried error modelling and correcting
techniques on them. Such techniques are on training mod-
els on sample pairs of correct and erroneous variants. But
this is possible only if the training samples are available.
There are several text collections which are created directly
by scanning hard copies and then OCRing them. We are in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
FIRE ’13, December 04 - 06 2013, New Delhi, India
Copyright 2013 ACM 978-1-4503-2830-2/13/12$15.00.
http://dx.doi.org/10.1145/2701336.2701648

an age of digitization. A large number of hard-copied doc-
uments are scanned and archived online. The Million Book
Project1 2 was a book digitization project led by Carnegie
Mellon University School of Computer Science and Univer-
sity Library. It was aimed at scanning and OCRing books
of different languages. By December 2007, more than 1.5
million books have been scanned in 20 languages; mostly
in Chinese, English, Telugu and Arabic. Indian Institute
of Science, Bangalore collaborated with CMU in the Mil-
lion Book Project3. More than 289,000 books have been
scanned. Out of these nearly 170,000 are in Indian lan-
guages[1]. More than 84,000 books (25 million pages) are
available on the DLI web site hosted by the Indian Insti-
tute of Science (http://www.new.dli.ernet.in). More than
149,000 books (43 million pages) are available on the DLI
web site, which is hosted by the International Institute of
Information Technology (http://dli.iiit.ac.in). The link to
other partner sites are also provided through
(http://www.new.dli.ernet.in). Contents between the two
sites overlap in order to ensure fail safe availability. Another
class of vital documents is comprized by the legal documents.
Millions of court documents, defense documents, proprietary
and legacy documents are in hard-copy format. The number
of such documents is alarming in countries like India where
they are in several Indian languages. Scanning, OCRing and
archiving such volumes of documents are a great challenge
itself. Information retrieval from such collections is no less
a challenge since OCRs in Indian languages are not well-
developed. Moreover, the print quality, font diversity and
several other features of the hard-copies contribute heavily
to the low quality of the scanned documents. Therefore, the
clean, error-free version of such a collection is not available
to be used for training purpose. Hence, error modelling on
such datasets would require manual creation of the error-
free version. ACM SIGIR Digital Museum4 have archived
lecture notes of IR stalwarts like Cyril W. Cleverdon, Ger-
ard Salton, Joseph John Rocchio, K. Sparck Jones, etc as
pdf versions created by scanning the original hard-copies of
the same. This collection also lacks the original text version.
OCRing of this collection is likely to generate erroneous texts
which have to be corrected without the error-free version be-
ing available.

The unavailability of training data presents a different paradigm

1http://en.wikipedia.org/wiki/Million Book Project
2http://medlibrary.org/medwiki/Million Book Project
3http://deity.gov.in/content/national-digital-library
4www.sigir.org/museum/allcontents.html

altogether. In this paper we have made an endeavour of ad-
dressing this problem and proposing a possible solution to
the problem. We have developed an algorithm based on
word similarity and context information. A string matching
technique (e.g., edit distance, n-gram overlaps, etc.) alone
is not reliable in finding the erroneous variants of an error-
free word due to homonymy. For example, word pairs like
industrial and industrious, Kashmir (place) and Kashmira
(name), etc. have very high string similarity and yet they
are unrelated. Such mistakes are even so likely when we do
not have a parallel error-free text collection to match the
erroneous variants with the correct ones using the common
context. However, context information can be used to get
more reliable groups of erroneous variants. Context infor-
mation can be harnessed effectively by word cooccurrence.
We say that two words cooccur if they occur in a window of
certain words between each other. Cancho et al. [8] focussed
on the importance of word co-occurrences in capturing rela-
tionships among words in a human language network. Word
cooccurrence have been used successfully in identifying bet-
ter stems [14], [15] than methods that use string similarity
only [12].

The rest of the paper is organised as follows:

In section 2, we discuss the related works. In section 3, we
describe our method. We present the results in section 4.
We have a discussion in section 5. We conclude in section 6.

2. RELATED WORK
Works have been reported on retrieval from OCRed text.
Taghva et al. [20] applied probabilistic IR on OCRed text.
Error correction was done using a domain-specific dictio-
nary. The misspelt words were clustered around correctly
spelt words, which were identified using the dictionary. If a
cluster of misspelt words was close to more than one correctly-
spelt word, the error patterns of the OCR used were anal-
ysed. Singhal et al. [18] reported that the linear docu-
ment normalization models were better suited to collections
containing OCR errors than the quadratic (cosine normal-
ization) models. TREC took an important initiative on the
study and effect of OCR errors in retrieval in their two tasks
: the Confusion Track and the Legal Track. The TREC Con-
fusion track was a part of TREC 4 (1995) [7] and TREC 5
(1996) [9]. In TREC 4 Confusion Track, random character
insertions, deletions and substitutions were used to model
degradations. Degradations were incorporated on 260,000
English electronic text documents from multiple sources.
For the TREC 5 Confusion Track, 55,000 government an-
nouncement documents were printed, scanned, OCRed and
then were used. Electronic text for the same documents was
available for comparison. Participants experimented with
techniques that used error modelling to handle OCR errors
using character n-gram matches.

A similar track, RISOT [5], was offered in Forum for Infor-
mation Retrieval Evaluation5 (FIRE) 2011. The purpose of
this task was to improve retrieval performance from OCRed
text in Indic script. In 2011, a FIRE Bangla collection of
62,825 documents was available as the “TEXT” or “clean”
collection from the Bangla newspaper, Anandabazar Pa-

5www.isical.ac.in/∼fire

trika. Each document of the collection was scanned at a
resolution of 300 dots per inch; each scanned document was
converted to electronic text using a Bangla OCR system
that had about 92.5% accuracy. Ghosh et al. [6] employed a
two-fold error modelling technique for OCR errors in Bangla
script. In 2012 RISOT, a Hindi collection pair was also of-
fered. The error-free Hindi document collection is created
from the Hindi newspapers Dainik Jagaran and Amar Ujala.
The OCRed Hindi collection was prepared using a Hindi
OCR system which also had 92.5% accuracy.

Substantial work has been reported in the literature on OCR
error modelling and correction. Kolak and Resnik [10] em-
ployed a pattern recognition approach in detecting OCR
errors. Walid and Kareem [11] used Character Segment
Correction, Language modelling, and Shallow Morphology
techniques in error correction on OCRed Arabic texts. B.B.
Chaudhuri and U. Pal produced the very first report on error
detection and correction of Indic scripts in 1996 [2]. This pa-
per used morphological parsing to detect and correct OCR
errors. Separate lexicons of root-words and suffixes were
used. Reynaert [16] has developed an online processing sys-
tem for post-processing of OCR errors. It first derives the
alphabet for the language from an appropriate source. Then,
the valid characters for a given language are retained. Then,
the list of all possible character confusions are produced
according to a given thereshold for Levenshtein distance.
Choudhury et al. [3] explored the challenges in developing a
spell-checker orthographic proximity between two words for
Bengali, English and Hindi.

3. OUR APPROACH
In this section we describe our approach. Most of the prior
works on the identification of erroneous variants of a word
have relied on string similarity alone. In this work, we have
combined context information along with a string similarity
measure to get more reliable erroneous variants. Before go-
ing into the algorithm, we describe the key concepts used in
the algorithm in the following subsection. Then, we describe
the algorithm in details.

3.1 Key Terms
3.1.1 Word cooccurrence
We say that two words, say, w1 and w2, cooccur if they
appear in a window of size s (s > 0) words in the same
document d. Suppose, the words w1 and w2 cooccur in a
window of size 5 in a document d. This means that there
is at least one instance in the document where at most 4
words (distinct from w1 and w2) occur between w1 and w2

or between w2 and w1. Let cooccurFreq(d,s)(w1, w2) de-
note the number of times w1 and w2 cooccur in d in a win-
dow of size s. Then, we call cooccurFreq(d,s)(w1, w2) the
cooccurrence frequency of w1 and w2 in document d for a
window of size s. However, it is a common practice to cal-
culate cooccurFreq(d,s)(w1, w2) over all the documents in a
collection. This is likely to give a more robust measure of
co-location of the words w1 and w2.

Word cooccurrence gives a reliable measure of association
between two words as it reflects the degree of context match
between the two words. Usually, the total cooccurrence be-
tween word pairs is calculated over a collection of documents

by summing up the document-wise cooccurrence frequencies.
High cooccurrence between a pair of words is an indicator
of high degree of relatedness of the words. This association
measure gets more strength when it is used in conjunction
with a string matching measure. For example, two words
sharing a long stem (prefix) is likely to be variants of each
other if they share the same context as indicated by a high
cooccurrence value between them. The word industrious
shares a stem “industri” with the word industrial. But, they
are not variants of each other. They can be easily segre-
gated by examining their context match as they are unlikely
to have a high cooccurrence frequency. In this paper, we
have used cooccurrence information with a string similar-
ity measure (LCS, discussed in the following subsection) to
identify erroneous variants of query words.

3.1.2 Longest Common Subsequence (LCS) similar-
ity

We choose Longest Common Subsequence (LCS) similarity
as the string similarity measure in our algorithm. We could
have also used the commonly used similarity measures like
edit distance for the same purpose. But, we choose LCS be-
cause it has not been used before and we wanted to explore
the utility of LCS similarity in our problem. But, prefix
matching is not suitable in this case because an error can
occur at any position of a word. For example, suppose a
word tobacco has been misrecognised as 1obacco. That is,
the first ‘t’ has been misrecognised as ‘0’. However, in this
situation the prefix match is null although 1obacco is a vari-
ant of tobacco.

Longest Common Subsequence [4] is defined as follows:

Given a sequenceX = ⟨x1, x2,....,xm⟩, another sequence Z =
⟨z1, z2,....,zk⟩ is a subsequence of X if there exists a strictly
increasing sequence ⟨i1, i2,....,ik⟩ of indices ofX such that for
all j = 1,2,...,k, we have xij = zj . Now, given two sequences
X and Y , we say that Z is a common subsequence of X
and Y if Z is a subsequence of both X and Y . A common
subsequence of X and Y that has the longest possible length
is called a longest common subsequence or LCS of X and
Y . For example, let X = ⟨A,B,C,B,D,A,B⟩ and Y =
⟨B,D,C,A,B,A⟩. Then, the sequence ⟨B,D,A,B⟩ is the
LCS of X and Y . In general, LCS of two sequences is not
unique.

In our problem, we consider sequences of characters or strings.
For strings industry and industrial, the LCS is industr. Now,
we define a similarity measure as follows :

LCS similarity(w1, w2)

= StringLength(LCS(w1,w2))
Maximum(StringLength(w1),StringLength(w2))

So, LCS similarity(industry, industrial)

= StringLength(LCS(industry,industrial))
Maximum(StringLength(industry),StringLength(industrial))

= StringLength(industr)
Maximum(8,10)

= 7
10

= 0.7

Note that the value of LCS similarity lies in the interval [0,

1].

3.1.3 Similar neighbours and dissimilar neighbours
We have used the notion of social relatedness as the pivotal
point of our clustering algorithm. In this problem, we say
that two words share the same neighbourhood of each other
if they appear in the same document and have some degree
of string similarity. Note that, we say that a string pair have
“high similarity” if the similarity value is larger than some
chosen threshold. However, there can be words which have
high string similarity and are variants of each other. But,
they do not cooccur in the same document. We attempt to
bridge the relationship between these words using the words
which are common neighbours. In other words, a word w is a
common neighbour of words w1 and w2 if w cooccurs with w1

and w2 in different documents but w1 and w2 do not cooccur
with each other. For this purpose, we have considered two
degrees of relatedness between two words. First we consider
that two words have a common neighbour. These two words
are similar neighbours of each other if they also have high
string similarity. Similar neighbours can be formally defined
as:

Words w1 and w2 are similar neighbours if they are con-
nected by a common neighbour and they have high string
similarity with each other as well as with the common neigh-
bour.

This situation is shown in Figure 1. Here Tobacco and To-
bacc0 share a common neighbour Tobacc1. Hence, Tobacco
and Tobacc0 become similar neighbours as they have high
string similarity. Secondly, we say that two words are dis-
similar neighbours if they have a common neighbour which
has low string similarity with both. However, these two
words are highly similar and are connected by the dissimilar
word. We give a more formal definition below :

Words w1 and w2 are dissimilar neighbours if they are con-
nected by a common neighbour and they have high string
similarity with each other but not with the common neigh-
bour.

This situation is shown in Figure 2. Here, Tobacco and To-
bacc are connected by Cigarette. Also, Tobacco and Tobacc
have high string similarity. So, here Tobacco and Tobacc
are dissimilar neighbours. In Figure 1, we say that Tobacc1,
Tobac and obacc are close neighbours of Tobacco since they
appear in the same document with Tobacco and have high
string similarity with Tobacco. However, Cigarette, Smoking
and Cancer are not close neighbours of Tobacco because they
only cooccur with Tobacco but are not erroneous variants of
Tobacco.

3.2 The Proposed Approach
Our approach has two basic steps :

1. Clustering

2. Cluster selection

These steps are discussed in detail as follows :

Figure 1: Similar neighbours

Figure 2: Dissimilar neighbours

1. Clustering Algorithm

In Algorithm 1, we start with the set L of all unique
words in the OCRed corpus. Here step 5 gets the close
neighbours of w. We refer Figure 1. For the word To-
bacco, {Tobacc1, Tobac and obacc} are the close neigh-
bours. Step 6 gets the similar neighbours of the close
neighbours obtained in the previous step. Tobacc0 is
one similar neighbour of Tobacco obtained through the
common neighbour Tobacc1. So, at the end of step
7, Sclosesimilar contains all the close neighbours and
similar neighbours of w. At step 9, we consider the
neighbours (not necessarily the close neighbours) of w
which have high cooccurrence with w. These neigh-
bours do not necessarily have high similarity with w.
In Figure 2, Cigarette, Smoking and Cancer are such
neighbours of Tobacco. At step 11, we get the dissim-
ilar neighbours of w. Tobacc is a dissimilar neighbour
of Tobacco.

2. Cluster Selection Algorithm

Next, we map the query words with the appropri-
ate clusters. By the appropriate cluster of a query
word wq, we mean the cluster containing words of the
OCRed corpus that contain the variants of wq. Algo-
rithm 2 shows our Cluster Selection algorithm.

Note that Algorithm 1 clusters the whole OCRed cor-
pus. We need to select appropriate clusters for each
query word for expansion. In Algorithm 2, we do this
selection process. At steps 2 and 3, for each query
word, we identify the clusters which has at least one
word that has high LCS similarity with the query word
wq. For example, let Tobacco be a query word. Let C
= {Tobacc, Tobacc1, Tobac, obac} be a selected clus-

Algorithm 1 : Clustering algorithm

1: Let L be the set of all unique words in the OCRed cor-
pus.

2: for each word w in L do
3: Let Sclosesimilar and Sdissimilar be empty sets. Let

Sall = Sclosesimilar ∪ Sdissimilar.
4: /* Close and Similar neighbours */
5: For word w1 cooccurring with w, calculate

LCS similarity between w and w1. Store w1 in
Sclosesimilar if LCS similarity(w, w1) > some
threshold T .

6: For each w′ in Sclosesimilar, find the words w2 cooc-
curring with w′ such that LCS similarity(w, w2) > T .
Include all these words in Sclosesimilar.

7: Repeat step (6) until no new word is added to
Sclosesimilar.

8: /* Dissimilar neighbours */
9: Consider top m (in terms of frequency in corpus)

words cooccurring with w.
10: For each such word w3, find the words w4 cooccurring

with w3 such that LCS similarity(w, w4)> T . Include
all these words in Sdissimilar.

11: Repeat step (10) until no new word is added to
Sdissimilar.

12: end for

ter. Then, at step 4, we construct C′ = C ∪ {wq} =
{Tobacco, Tobacc, Tobacc1, Tobac, obac}. Note that
C′ contains the query word Tobacco. At step 5, we
cluster C′ using complete-linkage algorithm. From the
resulting clusters, we keep only the one containing the
query word and ignore the rest. Let C′′ = {Tobacco,
Tobacc, Tobacc1} be the cluster thus chosen. Now, for
the query word, several clusters can be chosen by steps
2 and 3. Let these clusters be C1, C2, · · · , Cn. After
augmenting the query word, we get C′

1, C
′
2, · · · , C′

n.
After clustering each C′

i using complete-linkage algo-
rithm and eliminating the clusters not containing the
query word, we get C′′

1 , C
′′
2 , · · · , C′′

n . Next, according
to step 6, we calculate pairwise LCS similarity of the
words in each cluster C′′

i and calculate the Geometric
Mean of the pairwise similarities. For the cluster {To-
bacco, Tobacc, Tobacc1}, we calculate LCS similarity
of 3 pairs and calculate the Geometric Mean6 of these
3 values. Let the Geometric Means of pairwise LCS
similarities of C′′

1 , C′′
2 , · · · , C′′

n be GM1, GM2, · · ·
GMn respectively. Let GMmax be the maximum of
the values GM1, GM2, · · · GMn. Then, we choose the
cluster, Cfinal with GM value GMmax as the expan-
sion of wq. If the number of such clusters is more than
one, we take the union of all the clusters to get a single
cluster C+

final. So, we choose C+
final as the expansion

of wq.

4. RESULTS
We tested our algorithm on FIRE RISOT7 Bangla collection.
The collection statistics can be seen in Table 1. Bangla orig-
inal is the “clean” or error-free version created from Anand-
abazar Patrika. Bangla OCRed is the scanned-and-OCRed

6http://en.wikipedia.org/wiki/Geometric mean
7http://www.isical.ac.in/∼ fire/data.html

Algorithm 2 : Cluster Selection algorithm

1: for each query word wq do
2: calculate LCS similarity(wq, w), where w is a word in

each cluster S formed by Algorithm 1.
3: Choose all the clusters for which LCS similarity(wq,

w) for at least one word w in the cluster is greater
than threshold T .

4: For each cluster C obtained from step (3) define C′ =
C ∪ {wq}

5: Create complete-linkage clusters from each C′ of step
(4) and keep the cluster containing wq.

6: For a cluster C, let us consider LCS similarity be-
tween each pair of words in it. Let GMC denote the
Geometric Mean of LCS similarity of all the pairs.
Then, compute GMC for each cluster given by step
(5).

7: Select the cluster C with maximum GMC as the ap-
propriate cluster for wq. If the number of such clusters
is more than one, we take the union of all the clusters
to form a single cluster C+.

8: end for

Figure 3: Query-wise performance

version of the same. A document in the original version and
its OCRed version had the same unique document identifi-
cation string so that the original-OCRed pairs can be easily
identified. We can see that original version contains more
documents than its OCRed version. So, naturally, the extra
documents in the original could not be used for compari-
son. But, despite having fewer documents, we can see that
the OCRed collection contains more unique terms than its
error-free counterpart. The number of unique terms for the
Bangla original corpus is 396968 while the same number for
its OCRed version is 466867. This discrepancy is caused by
OCR errors. Most of the inflations are caused by misrecogni-
tions (as multiple candidates) and several other distortions.
The Bangla collection has 66 topics. These topics were cre-
ated for previous FIRE Ad Hoc tasks. A subset of the Ad
Hoc topics were selected for the RISOT task.

Table 2 shows the results. The evaluation measures are
Mean Average Precision (MAP) and Precision at 5 (P5) [13].
The experiments are done in Indri8 toolkit. The Indri toolkit

8http://sourceforge.net/projects/lemur/

Figure 4: Clusters

No. No. No.
Dataset of of of

documents topics unique terms
Bangla original 62838 66 396968
Bangla OCRed 62825 66 466867

Table 1: Collection statistics

uses language model [19]. Original text is the result when
all the queries are run on the “clean” or error-free version
of the corpus. This value can be considered as an upper
bound for performance. OCRed text is the result when the
same set of queries are run on the OCRed version of the
corpus. RISOT2011 is the result produced by Ghosh et al.
[6]. Note that RISOT2011 uses the entire error-free version
of the corpus for error modelling. Proposed method is the
result produced by our method on the OCRed corpus. In
the proposed method, we have three parameters, viz., T , m
and the threshold for the complete linkage algorithm. In
our experiments, we chose their values as 0.8, 10 and 0.6
respectively. We see that our method yields numerical im-
provement over the run OCRed text but this difference was
found to be not statistically significant at 95% confidence
level (p-value > 0.05) by Wilcoxon signed-rank test ([17]).
The proposed approach is numerically inferior to Original
text and RISOT2011.

5. ERROR ANALYSIS
We see that our method does not outperform the OCRed
text baseline significantly. So, we made a query-wise analysis
of our performance. We determined the number of queries
for which the proposed method outperforms the OCRed
baseline. There were 66 queries in total. Figure 3 shows
that for for 33 queries only the proposed method is better
than the OCRed baseline. For 27 queries, our method is
worse than the baseline. There is no difference in perfor-
mance for 6 queries. This indicates that our method leads
to performance drop in about 41% of the cases. We then
tried to inspect the reasons behind the dip. We looked at
the clusters generated by our method. Figure 4 shows a se-

Run MAP P5
Original text 0.2567 0.3485
OCRed text 0.1791 0.2738
RISOT2011 0.2245 0.3098

Proposed method 0.1974 0.2831

Table 2: Results

lection of clusters. We show one cluster per line. The “Good
Clusters” contain mostly correct inflectional variants of the
query word. The four “Good Clusters” shown in the figure
are the expanded versions of the words computer, commu-
nist, abedanpatro (Bangla of application) and Afghanistan.
However, the “Bad clusters” reveal the possible reasons of
performance fall. The figure shows two “Bad clusters”. The
first one is supposed to contain the variants of the word
porichalok (Bangla of director). However, it also contains
the word lorichalok which is the Bangla of lorry driver. So
this cluster contains two different words which have high
string similarity but are otherwise unrelated. The second
cluster contains sania and tania, i.e., two different names.
It also contains maania, Bangla of compliance. So, this is
a highly heterogeneous cluster of unrelated terms. We have
done a random sampling of the clusters and manually evalu-
ated them. We have seen that about 10% of the clusters are
“bad”. This indicates we need to refine our algorithm to pro-
duce consistently uniform clusters that would contain words
which are actual erroneous variants of each other rather than
words which have high string similarity only and are weakly
associated.

We note that one major drawback of our algorithm is the
inability to eliminate the chance cooccurrences. It makes no
effort to give more importance to the words which cooccur
with each other in a large number of documents than the
words that cooccur by chance in a few documents. The
appearance of porichalok (Bangla of director) and lorichalok
(Bangla of lorry driver) in the same cluster can be ascribed
to chance cooccurrences. So, it is crucial that we attach
importance to frequencies of cooccurrence. Moreover, we
have to use a more restrictive clustering algorithm which
would prevent loosely connected words from occurring in
the same cluster.

6. CONCLUSION
In this paper we have proposed a new problem premise and
made an endeavour to come up with a possible solution. We
have shown that it is possible, to an extent, to improve re-
trieval performance from erroneous text even when the clean
version is not available for error modelling. We see that
harnessing the context information through word cooccur-
rence gives a reliable measure of grouping inflectional error
variants. However, chance cooccurrences can be harmful as
unrelated words can occur together in a small number of
documents. So, we would aim at using a better clustering
algorithm that would generate more compact and meaning-
ful clusters. The proposed method can be of practical use as
it can be used effectively to retrieve important information
from collections which do not have error-free text version.
The proposed approach is language-independent and so can
be used across different text collections without language
specific resources. So, in a nut shell, we look forward to al-
leviating the drawbacks of our method and develop a more
effective version in future.

7. REFERENCES
[1] N. Balakrishnan. Digital library of india : A testbed

for indian language research
http://www.ieee-tcdl.org/Bulletin/v3n1/

balakrishnan/balakrishnan.html. TCDL Bulletin, 3.

[2] B. Chaudhuri and U. Pal. Ocr error detection and
correction of an inflectional indian language script. In
Proceedings of the 13th Int. Conf. on Pattern
Recognition, volume 3, pages 245–249, Vienna, 1996.

[3] M. Choudhury, M. Thomas, A. Mukherjee, A. Basu,
and N. Ganguly. How difficult is it to develop a perfect
spell-checker? a cross-linguistic analysis through
complex network approach. Proceedings of the second
workshop on TextGraphs: Graph-based algorithms for
natural language processing, pages 81–88, 2007.

[4] T. Cormen, C. Leiserson, R. Rivest, and C.Stein.
Introduction to Algorithms. The MIT Press, 3rd
edition, 2009.

[5] U. Garain, J. Paik, T. Pal, P. Majumder,
D. Doermann, and D. Oard. Overview of the fire 2011
risot task. volume 7536, pages 197–204. Springer, Oct.
2013.

[6] K. Ghosh and S. K. Parui. Retrieval from ocr text :
Risot track. volume 7536, pages 214–226, Lecture
Notes in Computer Science, Oct. 2013. Springer.

[7] D. Harman. Overview of the fourth text retrieval
conference. pages 1–24. The Fourth Text Retrieval
Conference, 1995.

[8] R. F. i Cancho and R. V. Solé. The small world of
human language. Proceedings of The Royal Society of
London. Series B, Biological Sciences, 268:2261–2265,
2001.

[9] P. Kantor and E. Voorhees. Report on the trec-5
confusion track. pages 65–74. The Fifth Text Retrieval
Conference, 1996.

[10] O. Kolak and P. Resnik. Ocr error correction using a
noisy channel model. pages 257–262. Proceedings of
the Second International Conference on Human
Language Technology Research, 2002.

[11] W. Magdy and K. Darwish. Arabic ocr error
correction using character segment correction,
language modeling, and shallow morphology. pages
408–414. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2006), 2006.

[12] P. Majumder, M. Mitra, S. K. Parui, G. Kole,
P. Mitra, and K. Datta. Yass: Yet another suffix
stripper. ACM Trans. Inf. Syst., 25(4):18:1–18:20,
Oct. 2007.

[13] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[14] J. H. Paik, M. Mitra, S. K. Parui, and K. Järvelin.
Gras: An effective and efficient stemming algorithm
for information retrieval. ACM Trans. Inf. Syst.,
29(4):19:1–19:24, Dec. 2011.

[15] J. H. Paik, D. Pal, and S. K. Parui. A novel
corpus-based stemming algorithm using co-occurrence
statistics. In ACM SIGIR, SIGIR ’11, pages 863–872,
2011.

[16] M. Reynaert. Ticclops: Text-induced corpus clean-up
as online processing system. In Proceedings of
COLING 2014, the 25th International Conference on
Computational Linguistics: System Demonstrations,
pages 52–56. Dublin City University and Association
for Computational Linguistics, 2014.

[17] S. Siegel. Nonparametric statistics for the behavioral

sciences. McGraw-Hill series in psychology.
McGraw-Hill, 1956.

[18] A. Singhal, G. Salton, and C. Buckley. Length
normalization in degraded text collections. pages
149–162, Las Vegas, NV, USA, 1996. In Proceedings of
the Fifth Annual Symposium on Document Analysis
and Information Retrieval.

[19] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: a language-model based search engine for
complex queries. Technical report, link :
http://ciir.cs.umass.edu/pubfiles/ir-407.pdf, 2005.

[20] K. Taghva, J. Borsack, and A. Condit. Results of
applying probabilistic ir to ocr text. pages 202–211,
Dublin, Ireland, 1994. In The Proceedings of the 17th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval.

